Finally, it is interesting to note that the \{SOP$\left.(\mathrm{OEt})_{2}\right\}$ ligand always adopts a bridging position to form an $\mathrm{Mo}_{2} \mathrm{OSP}$ five-membered ring (Lu , Huang, Huang \& Lu, 1984; Lu, Huang, Lin \& Huang, 1987). We are unaware of any examples of $\left\{\mathrm{SOP}(\mathrm{OEt})_{2}\right\}$ chelating to an Mo atom to form an MoSOP fourmembered ring. This leads us to believe that the $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left\{\mu-\mathrm{SOP}(\mathrm{OEt})_{2}\right\}_{3} . L_{3}\right]$ cluster compound may be stable.

References

Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.

Huang, J.-Q., Lu, S.-F., Shang, M.-Y., Lin, X.-T., Huang, M.-D., Lin, Y.-H., Wu, D.-M., Zhuang, H.-H., Huang, J.-L. \& LU, J.-L. (1987). J. Struct. Chem. 6, 219-233.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Lu, S.-F., Huang, J.-Q., Huang, J.-L. \& Lu, J.-X. (1984). Jiegou Hиaxue, Engl. Ed. 3, 151-154.
Lu, S.-F., Huang, J.-Q., Lin, Y.-H. \& Huang, J.-L. (1987). Acta Chim. Sin. 3, 199-209.
lu, S.-F., Shang, M.-Y., Huang, J.-Q., Huang, J.-L. \& Lu, J.-X. (1987). Sci. Sin. B30, 147-160.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1990). C46, 2039-2041

Structure of catena-Bis[μ-chloro-chloro- μ-quinoxaline- N, N^{\prime}-copper(II)]

By Seppo Lindroos* and Paavo Lumme
Division of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Vuorik. 20, SF-00100 Helsinki, Finland

(Received 20 December 1989; accepted 22 February 1990)

Abstract

Cu}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2}\right) \mathrm{Cl}_{2}\right]_{n}, \quad M_{r}=264 \cdot 60\), monoclinic, $\quad C 2 / m, \quad a=13.237(5), \quad b=6.935(3), \quad c=$ 9.775 (3) $\AA, \beta=107.88$ (2) ${ }^{\circ}, V=853.9$ (5) $\AA^{3}, Z=4$, $D_{m}=2.01$ (2) $, \quad D_{x}=2.06 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha$) $=$ $0.71069 \AA, \mu\left(\right.$ Mo K α) $=30.0 \mathrm{~cm}^{-1}, F(000)=524, T$ $=295 \mathrm{~K}$, final $R=0.025$ for 979 unique reflections. The polymeric structure is composed of double chains in which quinoxaline molecules form bridges between Cu atoms along the b axis and the two chains are bound together by two Cl atoms. The coordination polyhedron about the Cu atom is a trigonal bipyramid with three Cl atoms in the equatorial plane with the quinoxaline N atoms occupying the apical positions.

Introduction. Quinoxaline, like other nitrogen heterocycles with two N atoms in the molecule, has a tendency to form polymeric structures in which quinoxaline forms a bridge between two metal atoms (Lumme, Lindroos \& Lindell, 1987; Richardson, Hatfield, Stoklosa \& Wasson, 1973).

The metal-bridging capabilities of pyrazine, which quinoxaline chemically resembles, have been well studied (Santoro, Mighell \& Reimann, 1970; Darriet, Haddad, Duesler \& Hendrickson, 1979; Havnes, Rettig, Sams, Thompson \& Trotter, 1987). Unlike

[^0]pyrazine only a few structures of quinoxaline metal complexes have been determined. To learn more about the coordination behaviour of polymeric quinoxaline ($=\mathrm{Q}$) compounds, we have determined the structure of $\mathrm{Cu}(\mathrm{Q}) \mathrm{Cl}_{2}$, the results of which we present here.

Experimental. Quinoxaline (0.5 mmol) in ethanol $\left(100 \mathrm{~cm}^{3}\right)$ was added to $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in ethanol $\left(100 \mathrm{~cm}^{3}\right)$. The mixture was carefully heated (at $\sim 313 \mathrm{~K}$) for 6 h and allowed to stand for several weeks. The green crystals that formed were filtered and washed successively with ethanol and ether. The crystal selected for data collection had dimensions $0.2 \times 0.2 \times 0.4 \mathrm{~mm}$. The density was determined by flotation. The unit-cell parameters were determined by a least-squares fit of the setting angles of 25 reflections with $13 \cdot 2 \leq 2 \theta \leq 27.7^{\circ}$, measured on a Nicolet $P 3 F$ diffractometer. The intensity measurements were carried out at room temperature (295 K) with graphite-monochromatized Mo $K \alpha$ radiation and the $\omega-2 \theta$ scan technique. The scan rate varied from 2.0 to $29.3^{\circ} \mathrm{min}^{-1}$.

A set of 1056 unique reflections was obtained from 1113 reflections measured in the range $3 \leq 2 \theta \leq 55^{\circ}$ ($h 0 \rightarrow 19, k 0 \rightarrow 11, l-14 \rightarrow 14$). 979 reflections with $F_{o}>4 \sigma\left(F_{o}\right)$ were considered as observed and used in refinement. Three strong reflections (133, 204 and

Table 1. Fractional atomic coordinates and equivalent isotropic thermal factors (\AA^{2}) with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cu	0.04175 (3)	0	0.34227 (3)	0.0212 (2)
$\mathrm{Cl}(1)$	-0.12463 (5)	0	$0 \cdot 37025$ (7)	0.0252 (3)
$\mathrm{Cl}(2)$	$0 \cdot 18073$ (6)	0	0.25847 (8)	0.0314 (4)
$\mathrm{N}(1)$	0.0393 (1)	0.2978 (3)	0.3308 (2)	$0 \cdot 0220$ (8)
C(1)	0.1050 (2)	0.3987 (3)	0.4342 (2)	0.0256 (10)
C(2)	-0.1518 (2)	0.3991 (3)	-0.0202 (2)	0.0272 (10)
C(3)	-0.0911 (2)	0.2994 (3)	0.0961 (2)	0.0272 (9)
C(4)	-0.0261 (1)	0.3975 (3)	$0 \cdot 2170$ (2)	$0 \cdot 0208$ (9)
H(1)	$0 \cdot 153$ (2)	0.336 (5)	0.512 (3)	
H(2)	-0.191 (2)	0.328 (4)	-0.102 (3)	
H(3)	-0.093 (2)	0.162 (5)	$0 \cdot 100$ (3)	

Table 2 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$
The coordination sphere of copper

$\mathrm{Cu}-\mathrm{Cl}(1)$	$2 \cdot 300$ (2)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}(2)$	166.04 (3)
$\mathrm{Cu}-\mathrm{Cl}\left({ }^{1 i}\right)$	2.685 (1)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}\left({ }^{\text {iii }}\right.$)	88.53 (4)
$\mathrm{Cu}-\mathrm{Cl}(2)$	2.232 (2)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{N}(1)$	90.41 (4)
$\mathrm{Cu}-\mathrm{N}(1)$	2.068 (2)	$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{N}(1)$	88.89 (5)
$\mathrm{Cu}-\mathrm{N}\left(1^{\text {i }}\right.$)	2.068 (2)	$\mathrm{Cl}\left(1^{\text {ii) }}-\mathrm{Cu}-\mathrm{N}(1)\right.$	92.95 (5)
$\mathrm{Cu} \cdots \mathrm{Cu}^{\text {ii }}$	$3 \cdot 580$ (1)	$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(\mathrm{I}^{\mathrm{i}}\right)$	174.07 (8)
		$\mathrm{Cu}-\mathrm{Cl}(1)-\mathrm{Cu}^{\text {ii }}$	91.47 (4)
The quinoxaline molecule			
$\mathrm{N}(1)-\mathrm{C}(1)$	1.314 (3)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	$117 \cdot 4$ (2)
$\mathrm{C}(1)-\mathrm{C}\left(1^{\text {i }}\right.$)	1.405 (3)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}\left(1^{i}\right)$	122.2 (2)
$\mathrm{N}(1)-\mathrm{C}(4)$	1.369 (2)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	120.6 (2)
$\mathrm{C}(4)-\mathrm{C}\left(4^{\text {i }}\right.$)	1.420 (3)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}\left(4^{\text {i }}\right.$)	120.4 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.406 (3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 5$ (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.362 (3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}\left(2^{i}\right)$	120.5 (2)

± 0.001. The maximum and minimum peaks in the final $\Delta \rho$ map were +0.54 and -0.63 e \AA^{-3}, respectively.

Discussion. The atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms are listed in Table 1.* The bond lengths and angles are listed in Table 2. The ORTEP drawing (Johnson, 1965) in Fig. 1 shows the environment of the Cu atom. The coordination polyhedron around the Cu atom is a trigonal bipyramid with three Cl atoms forming the equatorial plane and N atoms of the two quinoxaline molecules the apices of the bipyramid. The Cu atom has two strong bonds to atoms $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ and one weaker bond of 2.685 (1) \AA to $\mathrm{Cl}\left(1^{\mathrm{ii}}\right)$. The coordination polyhedron is similar to that in triaquabis(quinoxaline)copper(II) perchlorate

[^1]

Fig. 1. An ORTEP drawing showing the environment of the central metal atom with thermal ellipsoids at 50% probability.

Fig. 2. Stereoview of the packing of the molecules as viewed along the c axis.
(Lumme, Lindroos \& Lindell, 1988), where the equatorial plane consists of three O atoms, and one of the $\mathrm{Cu}-\mathrm{O}$ bonds is distinctly longer. The asymmetry of the equatorial plane is due to the steric effect of the large quinoxaline molecules.

The title compound has an infinite double-chain structure in which quinoxaline molecules form bridges between Cu atoms along the b axis. Two such chains are linked together with two Cl atoms, so that the distance between the Cu atoms in different chains is $3 \cdot 580$ (1) \AA (Fig. 2). The $\mathrm{Cu}-\mathrm{Cu}$ distance is similar to dimeric chloro-bridged structures (Marsh, Hatfield \& Hodgson, 1982; Klein, Stevens, O’Connor, Majeste \& Trefonas, 1983). Two hydrogen bonds connect the double chains to each other in the direction of the a and c axes, and there is a further hydrogen bond in the direction of the chain.

The aromatic ring of the quinoxaline molecule is planar, the maximum deviation from the leastsquares plane being 0.008 (3) \AA for C(3). The heterocyclic ring exhibits a slight boat conformation with the N atoms -0.026 (2) \AA from the least-squares plane. The C atoms are coplanar [deviations 0.013 (2) and 0.012 (2) \AA for $C(1)$ and $C(4)$ respectively]. The aromatic and heterocyclic rings are slightly tilted toward each other, so that the quinoxaline molecule has an open-book form. The dihedral angle is $4 \cdot 9(5)^{\circ}$. The bond lengths and angles in the quinoxaline molecule are similar to those measured in other structures (Lumme, Lindroos \& Lindell,

1987, 1988; Padmaja, Ramakumar \& Viswamitra, 1987; Lipkowski, Andreetti \& Sgarabotto, 1977).

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Darriet, J., Haddad, M. S., Duesler, E. N. \& Hendrickson, D. N. (1979). Inorg. Chem. 18, 2679-2682.

Havnes, J. S., Rettig, S. J. Sams, J. R., Thompson, R. C. \& Trotter, J. (1987). Can. J. Chem. 65, 420-426.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Klein, C. L., Stevens, E. D., O'Connor, C. J., Majeste, R. J. \& Trefonas, L. M. (1983). Inorg. Chim. Acta, 70, 151-158.
Lipkowski, J., Andreetti, G. D. \& Sgarabotto, P. (1977). Cryst. Struct. Commun. 6, 197-200.
Lumme, P., Lindroos, S. \& Lindell, E. (1987). Acta Cryst. C43, 2053-2056.
Lumme, P., Lindroos, S. \& Lindell, E. (1988). Inorg. Chim. Acta, 144, 75-79.
Marsh, W. E., Hatfield, W. E. \& HodgSon, D. J. (1982). Inorg. Chem. 21, 2679-2684.
Padmaja, N., Ramakumar, S. \& Viswamitra, M. A. (1987). Acta Cryst. C43, 2239-2240.
Richardson, H. W., Hatfield, W. E., Stoklosa, H. J. \& Wasson, J. R. (1973). Inorg. Chem. 12, 2051-2053.
Santoro, A., Mighell, A. D. \& Reimann, C. W. (1970). Acta Cryst. B26, 979-984.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
Truter, M. R. \& Vickery, B. L. (1973). J. Appl. Cryst. 6, 309-346. Accession No. 124.

Acta Cryst. (1990). C46, 2041-2043

Structure of Bis(3,4-hexanedione dioximato)bis(thiourea)copper(II)

By M. Koman
Department of Inorganic Chemistry, Slovak Technical University, 81237 Bratislava, Czechoslovakia
M. MÁriássy
Czechoslovak Institute of Metrology, Bratislava, Czechoslovakia
and G. Ondrejovič
Department of Inorganic Chemistry, Slovak Technical University, 812 37 Bratislava, Czechoslovakia

(Received 4 July 1989; accepted 22 January 1990)

Abstract

Cu}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right], M_{r}=502 \cdot 11\), monoclinic, $C 2 / c, a=15 \cdot 065$ (4), $b=10 \cdot 216$ (3),$c=$ 15.513 (4) $\AA \hat{,}, \beta=103.86$ (2) ${ }^{\circ}, V=2318.0$ (11) \AA^{3}, Z $=4, \quad D_{m}=1.43, \quad D_{x}=1.44 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=$ $1.54178 \AA, \quad \mu=32.77 \mathrm{~cm}^{-1}, \quad F(000)=1052$, room temperature, $R=0.034, w R=0.037$ for 985 reflections with $I \geq 3 \sigma(I)$. The structure consists of centro-

symmetric monomeric molecules $\left[\mathrm{Cu}(\mathrm{hd})_{2}(\mathrm{tu})_{2}\right]$ (hd $=3,4$-hexanedione dioximate anion, $\mathrm{tu}=$ thiourea). The coordination polyhedron of copper(II) is a square bipyramid with four dioximate N atoms in the equatorial plane and two thiourea S atoms in axial positions, in contrast with the pentacoordinate copper dioximate complexes reported so far.

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, hydrogen bonds, angles involving H atoms, and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53078 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

